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OVERVIEW

INTEGRATED CONTINUOUS-TIME

e Overview of applications for continuous-time filters
FILTEES o State-variable synthesis techniques

e Gm-C, GM-OTA-C & MOSFET-C Filters

o Highly linear continuous-time filters

¢ Noise and dynamic range

* On-chip tuning techniqués
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GENERAL USES OF CONTINUOUS-TIME FILTERS
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USE OF CONTINUOQUS-TIME FILTER FOR

ANTIALIASING/SMOOTHING
H{f) DM G(N)
Continuous- _(;J‘tr:“ntinuous-
'ﬂ Anihaiss e A e N Smoothing [~
Fliter Filter

F¢ . baseband upper frequency limit
Fs : sampling frequency
(@) f Fc << Fs/2:

Magnitude

G and IH(H)1
'P‘m are not critical
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(b) If Fc is close to Fs/2:

1
D(\\ IG(H)l and IH(f)I
are critical
Fc Fs/2

Since H(f) is critical for filter cutoff frequencies and is near fs/2,
the continuous-time filter must be well controlled to prevent changes
to the passband. Since must control continuous-time filter well,
maybe make the entire system continuous-time.

Magnitude

Freguency
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COMPARISON OF ANALOG AND DIGITAL FILTERS

| | P ~ N (filter order)
' Mhoder | | = g H! P-fc
Pt =1 fiter ) )
Output P - € ~ dynamic
range
%
fc frequency
P nalog
N fc digital

1
¥

40-80dt dynamic range

Vittoz, iISCAS 1980 pg. 1374

Issues NOT included in the above comparison

e Advantage of programmability in digital filters

o No manufacturing tolerance of digital filter frequency
response

» Overhead of the A/D, D/A, antialiasing and smoothing filter
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CONTINUOUS-TIME AND SAMPLED-DATA FILTERS ROUGH ATTRIBUTES OF INTEGRATED CONTINUOQUS-TIME
FILTERS

Input = ANALOG FILTER Qutput

o successful for high frequency (up to 100 MHz)

/ l \ ) e achieve moderate linearity (e.g. 40-60 dB)

Switched-Current

Continuous-Time Switched-Capacitor
» achieve dynamic range in 60-80 dB range
« performance of the two is comparable

- 5% with good
e switched-capacitor filters do not require a tuning circuit « frequency response accuracy befter than + — 5% with go

design
e continuous-time filters do not suffer from high frequency
noise aliasing « not presently viable for high-Q, high frequency, high dynamic
» linearity of switched-capacitor circuits generally superior range applications (eg. A bandpass filter with: Q=100, 10.7
e most low frequency filters are switched-capacitor in the MHz, 100 dB dynamic range)
industry

e Over 10 MHz péssbands. continuous-time filter is only choice

« switched capacitors suffer from incomplete settling, switch
charge injection, noise aliasing P

o continuous-time filters often suffer from tuning circuit
feedthrough
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STATE-VARIABLE FILTERS - INTEGRATOR IMf;l;i!\:gj\?:gNWlTH VARIOUS
Vin !ce
Vout Vin ‘
Necessary Building Blocks Ci -
e integrators - = -4 e
" Gm-C Integrator - -
o weighted summers c Gm-OTA-Integrator
Vin R
~_°Vout
Common Structures = R megre
o Cascade of biguads For All Integrators
¢ Signal flow graph technigues v, —up
~ simulation of LC ladder equations (leapfrog filter) Vin 8

w, = & for Gm-C and Gm-OTA-C integrators.

w, = g for the RC integrator



J. Khoury, "Integrated Continuous-time Filters”, Monterey, Ca. Dec.9, 1998 11

STATE VARIABLE SYNTHESIS TECHNIQUES

Biquadratic Implementations - The Two Integrator Loop

Second-Order Bandpass Response

Kuw,ys (5)
$2 4+ Bs + w2 "

Vow(s) =

Second-Order Lowpass Response

Kuw,?

V;S =
apls) $2 + %5 + w?

Vin(s)

Weighted Summing Integrator
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Equivalent Signal Flow Graph

K
Vin O ) Q

Generalized Biquadratic Transfer Function
s + b5 + Woz?

Vo(s) = 2 Wop 2
§ + 0p° + Wop

Vin(s)

Zero placement in the generalized biquad can be achieved by (i)
creating an output signal that is the weighted sum of the two
integrator outputs, as well as the input, Vin or (ii) by summing
weighted values of the input, Vin, into both integrators.
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ACTIVE LC LADDER SIMULATION

Why LC Ladder Simulation ?

» Wealth of design knowledge exists for passive ladders

o Passband sensitivity is ZERO to component variations (for
maximum power transfer design — equal terminations)

+ Most cases, lower sensitivity ==> lower noise structure

Methods of Ladder Simulation
» operational simulation (e.g. leapfrog filters)

. component by component simulation
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OPERATIONAL SIMULATION OF LC LADDER

Goal: Find an active circuit that will simulate every branch
voltage and branch current equation of the following passive LC
ladder:

_'_A> Ra I L2 Ic:»

Va=Vin = Vi Vo=V =V, Vo=Vs L=I4 -1

L= - Ip
Step 2: Scale all Currents by r

All currents are scaled by an arbitrary resistance (e.g. r = 1Q) so
that the input/output relations of the integrators are

i i _ry _ .l Vs .k
dimensionless. rl4= ¥ i= e rl, = Py V=&

rlo=50 Va=Va-Vi W=Vi-V;, Vo=V,

rlhi=rlg—rly, rhhi=rhL—r71lp
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Resulting Active Filter

! -1 1 -1 1
N P Z N\ pd S, Ve
Vi 7 Y 7 N rd
1 4 -f/R
srC L
VR stCyq sty 3
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Z 5
~ 7/
-1 1
Vi Vo
7Ry

Circult Block Diagram
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Modified Circult Diagram
LA ITTT LT LT
": 2. "y ~ Vo
* “ ‘l
; \ :
H ' :
1 H t
: ' ’
' : '
] 3 4
4 4 :
1) ¢ .
¥ * !
[} 4 H
] ’ H
‘ 1]
“ ;
Q‘ :
Lossy s, /
Integrator “~._ R

vi ll} Gain adjust for 0dB

*+eue.a=* rather than -6 dB

Final Block Diagram

16
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TRANSCONDUCTOR-C FILTERS

Q_..._.__....___..._.\ e —C -
+ : +
Vind G, % c Vout
oO——a+ - o
. /— _____ - -
'out
G w
H(s) = —= = =
(s) sC s

Ideal Integrator
e infinite gain at DC
¢ unity gain at w,

e phase shift of — /2 radians for all frequencies
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CHARACTERISTICS OF A GOOD TRANSCONDUCTOR

¢ high input impedance
« high output impedance

¢ large signal handling capability at the input and output
terminals (with low distortion)

¢ high DC gain
¢ wide bandwidth

» well defined and tunable V— >| mechanism
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IMPLEMENTATION OF A STATE-VARIABLE BIQUAD TRANSCONDUCTOR DESIGN APPROACHES
-1
1Q SIGNAL
« FLOW GRAPH } }
Vin O—>— }0; © > ’ Moyt o owrs fo M out
=0 bp =% Vop ' v
5 ° s - H — o .
o V
- out
0"—‘—""'"“'_""
_l_ + N v M Gm
© 7R G ind (V->I Conversion)
+ o
* 4
e} C Vout
. mLd T o

Two Primary Design Issues

O] _ Gm-C e V — > | conversion

v M * IMPLEMENTATION

ind Cm » Obtaining high output conductance
(6 e TR -
) p—

« signal summation achieved by paralleling transconductor
outputs t

« Damping provided by an equivalent resistance of value

Q/Gm.

20



SUMMARY OF TRANSCONDUCTOR BUILDING BLOCKS
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TRANSCONDUCTOR-C INTEGRATOR PHASE ERRORS

RAgad

Gmoll + 8/w;) T out
(1 + s/wp) 1 + s7ou(C + cout + Cin)

H,(3) =

Pr—error = 7r/ 2 + (w/ wz) - (w/ wp) - ardan[AO(w/ wox)]

¢ 20 MHz G,, — C Bessel filter
o C = 1pF, Gpo = 125.7uS
® Tou = 1MQ

e ==> A, = 126 (low DC gain introduces phase lead at low
freq) ’

e transconductor parasitic pole at 300 MHz (no zero)
e phase error at 20 MHz: -3.4°

e modest phase lead can be added with resistor in series with
load capacitor to create a high frequency zero

¢ high Q requires phase control servo loop
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A HIGHLY LINEAR BICMOS GM-OTA-C INTEGRATOR

Bias M2

Curmrent
Source &
CMFB

l ! [Transhnear

J Muitiptie

¢

« basic transconductance set by resistance, R

» negative feedback used to reduce source foliower impedance
(M5, M8)

» feedback loop: M5, Q1, Q3 and Q7
» feedback loop: M8, Q2, Q6 and Q8
o Gm output mirrored from Q3,Q6 to Q4, Q5.
e tuning circuit does not impact signal swing

» OTA increases gain, splits poles and prevents loading
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MOSFET-C FILTERS

Basic Concept

o similar to Gm-OTA-C Implementation

e except replace Gm with a passive element (e.g. resistor) as
opposed to one that dissipates power

« instead of using resistors, use MOSFETs in triode region

o fully balanced design will eliminate even-order nonlinearities

¢ depending on application and load driving needs, may
require an OPAMP or an OTA
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NONLINEARITY CANCELLATION IN BALANCED MOSFETS

Consider two matched MOSFETS

Ve

— - -
Vx fe rT_1 )

-y
'ch I o v

H

(1) I =GWVe)V: - V) + al(+V2)° — V3]
@) I = GVo)(-Vi = V) + wl(-V2)° — V2
1)=-@ I -1 =26Vo)Vs

w
G(Ve) = -EMC (Vo — Vr)
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Compare with two Linear Resistors

G 'a
-
Vx o -\, -0V
y
G 's
Vy o ANNA———" 05
y
Ig = I'g = 2GV;
The Fully Balanced MOSFET-C Integrator
VC
[ c
Vx o ] L T v "—{6——
M ) VO
|4
4 r v o) -0

-
y
Vxo T i€
Cc

1) Vilt) = W) — 5[ Ir)dr

) ~Vilt) = %) - 5[ T (r

42
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Differential Balanced Integrator - Balanced and Linear
1

- , v
W)~ @) Valt) = ~Valt) = & [(r) = ['()dr ©
v Kl
-1 19 IT
Vo(t) = —R—é"/_w Vz(T)dT c
Consider a Fully Balanced RC Integrator Y o J‘f"l €
c _ b} £V O
R ! It
v, o — ANAN——— 0 Vo
V2o I'f"l 1€
, c
R ! o
Vx o AN Ve 1

Balanced structure is immune to common-mode noise such as
The input/output relationship is identical to the MOSFET-C substrate coupling.
integrator; however, internally the circuits differ. The RC
integrator is linear so the virtual ground inputs of the opamp stay
at Q V, but V, differs from zero. In fact, V; follows the second
order nonlinearity of the MOS transistors.
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BALANCED OPAMP DESIGN STYLE

s

AN

VANAA-AN/

AA

A Fully Balanced Folded-Cascode Opamp

VDDA

M1 ;:' "BPT . [ BP1'{CM13
M19 -I M20
M4‘5= T 4,|;M5

Cep MB':“- BP2 ] BFH M7 Cen

Remp I—I Remn
it o[y Mo l—-{ 17M18] l;ws

a Vref

ol M |-sn2 I
1]} M1 BN1_ M1

i {f M1

GNDA

o B wan
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MOSFET-C TOW-THOMAS BIQUAD
Signal Flow Graph & Active RC Tow-Thomas Biquad

SIGNAL
FLOW GRAPH
TOW-THOMAS
—A(Q_F: c BIQUAD
IMPLEMENTATION
. ol LEMENTATIO
wno-»ij>
- Vx - \Gut
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MOSFET-C Equivalent of Tow-Thomas Biquad

Lo,

—iT—L—C Yo c

Eaia
°"MﬂTL'—J__K__| rr\MR L:K““

c_tcu y ¢

T L —LGMR
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HIGHLY LINEAR R-MOSFET-C FILTERS

Yc?

(2]
+Vx *
Czamul
MOSFET-C
Integrator
RY) x

Ve2 c1
. )|
+V O=-AAN,
4
Moon &
Song H
Integrator
R
Y AAN . g B

X

Attributes: Lossless Integrator

 Voltage drop occurs primarily across resistor ==> small

MOSFET Vps ==> excellent linearity

e linearity to 90 dB

» generally low frequency applications (digital audio)
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Lossy Integrator PROGRAMMABLE ACTIVE RC FILTERS
A
A1 ot DO E
+V o=NAN : A0
Moon & +Wo -{ e——ﬂl"—{
l‘-in‘:"g! Lossy y Ve O-AAA~ ---- )
egrator Vo
28] D1 Do T8 n*%u(
VN . 4 A0 Y
R2 Vin C-AAA~ -e-e vi i
WA~
: MOS davices used as switches —I(—-HL‘-
‘ i Ao
« negative feedback improves linearity further Durham, Hughes & Redman-White Li¢ ' hl
{also Khomramabadi, Tarsia &Woo)
« loss of loop gain ==> reduced frequency of operation . (nkeo Shmmiminhet Nugurniroury, -«

e program capacitors, resistors or both to frequency tune filter
» excellent for high dynamic range applications
o excellent linearity (independent of matching to first order)

e programming achieved with digital counters and/or DSP ==>
no tuning circuit feedthrough

¢ tuning resolution limited
¢ infinite hold time for tuning circuit

E e switch parasitic capacitance and series resistance can alter
frequency response

» bandwidth achievable slightly less than MOSFET-C filter
approach
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Maximizing Dynamic Range

* large capacitor ==> low R (or high Gm) ==> large power
dissipation & difficult to drive impedances

e large capacitor ==> large chip area

e high signal swing ==> high vdd

e high signéi swing ==> better linearization methods required
e high signal swing difficult with filter offsets

¢ high temperature ==> higher noise
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ON-CHIP TUNING TECHNIQUES

Two Primary ltems To Be Tuned
o Frequency scaling (i.e. time constant control )

« Q control (i.e. phase shift adjustment in critical feedback
loops)

» For integrator: frequency scaling => unity-gain frequency
control and Q-control => phase shift adjustment

Two Basic Approaches to Tuning
» Indirect tuning or "Master-slave” tuning

 Direct tuning for extremely accurate response (e.g.
necessary for very high-Q filters)
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MASTER-SLAVE FREQUENCY TUNING: Reference Resistor

Basic ldea

RC products of filter are accurately controlled by two steps:

1. At manufacture, trimming is performed at test time to remove
the effect of capacitor errors due to processing. (This can be
done by adjusting R or C)

2. In operation, a precision off-chip resistor serves as a
reference that the internal resistors or G, stages track with a
feedback control loop.

3. Accuracy depends on matching of tuning circuit resistor to
main filter (slave)
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Reference Resistor Tuning Circuit

jL RGN, e

V= Re 1, | c 7
1 - " L _l_
’ “ ............ | ____ R *
Filter Resistors

Circult Stabifizes when Ix=0. V shoukt be amall 10 avold transistor nenlinearities
(Fully Diffsrantial Approach coukd be used to avoid the small V requirement)

LT
T '

v ]

- o x T __rf'ﬁ_ :

’ Filterto remove__ .- A Newssensssnsuns s
wippiing from seinpliig Filter Resistors

Vigwanathan, Mustuza, Syed,Benry & Staszel
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COURSE CONCLUSION

« The following material was described:

- Overview of applications for continuous-time filters

— Fundamentals of popular continuous-time filter techniques

- State-variable synthesis techniques
- Gm-C, GM-OTA-C and MOSFET-C filters
- Noise and dynamic range

~ On-chip tuning techniques

e The field of continuous-time filters is continually evolving

e Research directions focused on linearity improvement
techniques and low power supply voltage operation

o Continuous-time filters are excellent in moderate dynamic
range applications but need considerable improvement
before usable in high Q high dynamic range applications.
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